

EFFECTIVENESS OF COMO AND NIMO CATALYST ON CO-HYDROPROCESSING OF HEAVY ATMOSPHERIC GAS-OIL/WASTE COOKING OIL

S. Bezergianni A. Dimitriadis

Laboratory of Environmental Fuels & Hydrocarbons Chemical Processes & Energy Resources Institute Centre for Research & Technology Hellas

S.J. Kiartzis M.C. Magiliotou A.N. Skandilas V.S. Dimitropoulos

HELLENIC Thessaloniki, Greece

Waste Cooking Oil Diesel-2G

- Better combustion (increased cetane)
- More economic (high HHV)
- More stable (no TAN, high IP)
- Sustainable

Large-scale units require large investments

Potential to cover 9,5% of Greek diesel demand

www.biofuels2g.gr

SustainDiesel Project

- Aim: Improvement of diesel sustainability by incorporating WCO and RES in existing refinery
- Project duration: 23.3.2011 22.3.2014
- Partners:
 - Coordinator: Centre for Research & Technology Hellas (CERTH)
 - Academic partners: Aristotle University of Thessaloniki & National Technical University of Athens
 - Industrial partners: Hellenic Petroleum & Sunlight S.A.
- Financing: Program Competitiveness (ESPA) with funds from EU and Greek Government

SustainDiesel Technology Overview

- A. Evaluate technical feasibility of incorporating WCO as alternative feedstock for diesel production
 - Same infrastructure & operation
- B. Assess carbon footprint and GHG emissions improvement versus current market diesel

Technical Feasibility Study

- Evaluation of hydrotreating catalyst
- Determine optimal operating conditions
 - T, P, H₂/oil, LHSV
- © Determine max WCO mixing ratio
- Evaluate emissions & engine performance

Experimental Methodology (1/3) Overview

- Two commercial catalyst
 - Commercial NiMo
 - Commercial CoMo
- Three feedstocks
 - Heavy Atmospheric Gas Oil 100% (HAGO)
 - HAGO with 10% waste cooking oil (WCO)
 - HAGO with 30% waste cooking oil (WCO)
- Small scale hydroprocessing pilot plant
- 8 experimental runs

Experimental Methodology (2/3) Catalysts & Operating Parameters

NiMo Catalyst

4	 Temperatures	330°C	350°C	370°C
	Feedstock (HAGO/WCO)	100/0	100/0	100/0
- 10		90/10	90/10	90/10
		70/30	70/30	70/30

Pressure (psig)	812	
LHSV (hr ⁻¹)	1	
H ₂ /Oil (scfb)	3000	

CoMo	Catal	ys'

- du	Temperatures	330°C	350°C	370°C
	Feedstock (HAGO/WCO)	100/0	100/0	100/0
		90/10	90/10	30 /10
		70/30	70/30	70/30

Comparison

Experimental Methodology (3/3) Infrastructure & Experiments

- Hydrotreating effectiveness parameters
 - Heteroatom removal (S, N)
 - Saturation of double bonds (Br, H/C)
 - Diesel yields (180°C 360°C)
 - Conversion
 - Catalyst decay ratio

Heteroatom removal

- NiMo catalyst showed a performance increase for the feedstock with the largest WCO content
- NiMo catalyst exhibited increased HDN performance with increasing WCO content

WCO addition does not decrease product quality when NiMo catalyst is used

Saturation

Br.Index

 Both catalysts provide good saturation of double bonds for all type of feedstocks

WCO addition does not limit saturation

Diesel Yields-Conversion

- CoMo offers higher conversion and diesel yields for pure HAGO and low WCO content
 - Triglycerides contained in WCO can be more easily converted into diesel range hydrocarbons

WCO addition increases conversion and improves diesel yields

Catalyst Deactivation

NiMo deactivation rate is 3 times smaller than CoMo

Conclusions & Future Steps

- WCO addition in HAGO hydrotreatment does not limit targeted reactions (heteroatom removal and saturation)
- WCO addition increases conversion and diesel yield
- NiMo catalyst more suitable for WCO containing feedstocks
- Future steps
 - Evaluation of maximum WCO ratio that can be incorporated in existing refinery
 - Assessment of maximum potential GHG emission benefits by incoporating WCO and H₂ from RES
 - Economic feasibility analysis

Thank you

for your attention

